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Exact soIution of the reaction-diffusion problem for a particle 
generating band on a surface by Riemann-Hilbert matching 
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Department of Chemishy and CPAC University of Washington, Seattle, WA 98195, USA 
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Abstract. The existence of a class of exact solutions for diffusion-reaction problems is 
demonstrated for the example of a band. The method may be applied to any particle source 
which can be analytically mapped to B band (or a disc) situated on an infinite plane. A simple 
asymptotic expression for the experimentally mwumble collector efficiency (current-current 
response function) has been found. 

1. Introduction 

The diffusion-reaction problem for particle generating sources on an infinite supporting 
surface arises in a number of physical and chemical contexts. Among important applications 
are the description of electrochemical micro-electrode sensors [I] and molecular electronic 
devices [Z]. Progress in research with these and similar devices has been impeded by the 
lack of an exact description of the corresponding diffusion-reaction processes. Computer 
simulations [3] may not lead. directly to accurate results due to the presence of singularities 
when the particle source dimensions tend to zero. An additional computational problem 
is connected with the presence of non-analyticity in the supporting surface reaction rate 
constant. This latter problem arises because particles generated (starting at t = 0) at the 
electrode surface will migrate to infinity as t -+ 00 if the supporting surface is inert. 
However, in the case of particle absorption on an infinite plane, even if this is infinitely 
slow all the particles will eventually be absorbed. 

The diffusion problem for a generating band situated on an inert plane in the limit of 
zero band width, and/or as t + 00, bas recently been analysed by Szabo et a1 141. They 
have shown that the long-time limit of this diffusion current is described by the asymptotics 
of the solution for a hemi-cylinder on an inert plane (which could easily be reduced to the 
classical solution for a cylinder IS]) by setting the radius to one quarter of the band width. 
We have subsequently shown [6], using the zero-range potential approach, that this result 
is of a very general nature. Due to dominating singularities when the source dimensions 
tend to zero, the asymptotics for electrodes of different shapes, both on inert and reacting 
planes, can be described by the solutions for a disc or for a band by adjusting one length 
scale parameter only. The applicability of this approximation to solutions of the Helmholtz 
equation in a halfspace has been developed by the St Petersburg University school 171. 

In this paper we give an exact solution for a prototypical diffusion-reaction problem 
for a zero-height band (on which particles are generated) situated on a reacting infinite 
plane (see figure 1). The relationship of this problem to the description of redox reactions 
on micro-electrodes is described in appendix 1. As a method of solution we have used 
Riemann-Hilbert matching in the absence of time inversion (f 4 - t )  symmetry [8]. An 
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analogous approach could be used for a generating disc on a surface and for all other 
geometries which can be analytically mapped to a band or a disc on an infinite plane. The 
work presented in this paper can be considered as an extension of the approach of Marshall 
and Watson [gal and Keinz [9b] from one to two spatial dimensions. 
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The paper is organized as follows. In section 2 we express the basic equations. In 
section 3 these equations are transformed into a solvable Riemann-Hilbert problem. In 
section 4 the singular integrals resulting from the solution of the Riemann-Hilbert problem 
are transformed into non-singular forms in which they can be numerically calculated and 
compared with experimentally measurable timeFourier-transforms of densities and currents. 
In section 5 the nature of the singularities of the exact solution are made clear and asymptotic 
expressions are given in a form useful for analysis of experimental data. In the concluding 
section we discuss the reasons for the relative simplicity of the asymptotics for the collection 
efficiency, the relationship of our results to those results obtained in the zero range potential 
approximation [6], and possible generalizations. 

2. Description of the problem 

The geometry is as in figure 1. The concentration of particles p ( x ,  z, t )  obeys the diffusion 
equation 

as p ( x ,  z, t )  is assumed to be independent of the coordinate y .  In what follows we will 
calculate currents and other observable quantities per unit interval in the y direction. We 
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seek a solution subject to the following boundary and initial conditions: 

A 
for z = 0 1x1 < - 

2 
ap 
az 
ap 

kip - D -  = O(t)A 

A 
’2 for z = 0 1x1 kzp - D z  = 0 

p ( x ,  z, t )  -+ 0 for + CO k2 > 0 

where @(r)  is the step function, A is the band width (figure l), k, and k2 are surface reaction 
constants for 1x1 e A/2 and 1x1 > A/2 respectively, and A is a constant source per unit 
surface area, the meaning of which is indicated in the appendix 1 for the electrochemical 
situation. The problem has only the trivial solution p = 0 for A = 0 or A = 0. 

Taking simultaneous Fourier transforms of equation (1) with respect to x and t we find 
the equation 

which has the solutions 

where $(p, iw) is to be determined by the enforcement of the boundary and initial conditions. 
The function p ( x ,  z, t )  satisfying (1) and decreasing as z -+ CO can thus be represented in 
terms of the Fourier integrals 

CO 

p ( x ,  z, t )  = - / p(x,z,iw)eiutdo Jz;; -m 

The (distribution valued) generalized function p ( p ,  io) satisfies the conditions 

r ( p ,  io) = P(-p* ,  (iw)*) lim [ p E ( p ,  iw)[ <constant (5) 
P” 

corresponding to the fact that the concentration p ( x ,  y .  r )  is a real finite function. The initial 
condition at t = 0 will be satisfied by (4) because all singularities of p(iw, p )  as a function 
of w will be located in the  upper^ half-plane of the complex variable w and it is possible, for 
t < 0, to close the integral over dw in (4) by the integral contour over an infinite semi-circle 
in the lower complex half-plane. 

We require that the square root ,/- as a~function of the complex variable q 
be confined on the Riemann sheet where 

k 1 , 2 + D E # 0  Re (Imp=O). (6) 
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Figure 2. The singularity smuure of the integrands of integrals in the text. The points 
q1 = i& and q2 = -i& are the endpoints of square root cuts. The cut along the real 
axis is determined by the behaviour of the factor e$@): = y(p)e*h-@ for real p .  
There are additional poles in some integrands. The contours r, P, I1 and 11' are utilized in the 
developments described in the text. 

We choose the square root cuts running (see figure 2) from 

f i  - x x .  
* i e  to E (7) 

The inequality (6) guarantees that expression (4). for p(x ,  z ,  t), decreases as z + 00 and 
the boundary condition at z + 00 is satisfied. The boundary condition at z = 0 can be 
rewritten as 

where we have substituted (4) into (2) and used the expression for the Fourier transform of 
the step function 0(t):  

The problem is thus reduced to the construction of $ ( p ,  io) satisfying (8) and (5). In the 
next section we show that such a construction can be performed by finding the solution of 
the Riemann-Hilbert matching problem. 
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3. Formulation and solution of the Riemann-Hilbert matching problem 

We first seek the solution of equation (8) on the interval x > -8 and will later use the 
symmehy about the inversion x --f -x to continue the solution to the interval x < -8. 

The function ;(p, io) may be represented in the two forms 

The boundary conditions (8) will be satisfied for x 2 -4 if the (unknown) functions 
fi (4, io) and fz(4, io), considered now as functions of the complex variable q, have 
singularities only in the lower and the upper half of the complex plane respectively. This 
follows from Cauchy’s theorem after closing the integration paths over dp  in (8) by semi- 
circles in upper and lower complex half-planes for x t $ and 1x1 c 8 respectively. 

Let us introduce a single function f (4) of the complex variable q (the io dependence 
will be understood) such that 

f ( 4 )  = f i (4 ,  i d  for Imq z 0 

f (4) = f d q .  io) for Imq 0 

f ( p + i s )  = f i ( p J , 4  

f(p -is) = f 2 ( p ,  io) E -+ +0, with p real (11) 

this being the essence. of the Riemann-Hilbert method [8]. According to (IO), the function 
f ( q )  must have a cut on the real axis p = Re q with the discontinuity satisfying the relation 

where the functions 

are analytic functions of the complex variable 4 in the strip near the real axis where 

provided that the logarithmic branch cuts do not intersect the boundary of the strip. The 
branch of In y(4) is chosen so that on the real axis Im(q) = 0, Re(q) = p and 

Iny(p) --f 0 as IpI --f CO. (15) 
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Equation (12) has the form of a classical Riemann-Hilbert matching problem [8]. In order 
to solve (12) we introduce an auxiliary function F ( 4 )  [8]: 

A M Brodrky and W P Reinhardt 

F(q)  = f(4)e-*("' 

Using the well known symbolic relation 

=- i ni8(p' - p) E -+ +O for real p and p' (17) 
1 

p ' - p f i &  p ' - p  

(12) can be rewritten as 

B ( p )  ~ ( p  - ic) - F ( p  + iE) 

If the constant A was equal to zero and, correspondingly, B(p) = 0, then the function 
F(q)  could be analytically continued to the entire complex plane and in accordance with (5) 
would be a real constant. Correspondingly equation (18) has the unique (up to a constant 
C )  solution 

and according to (16) 

The constant C C(io) is tobe determined from the symmetry condition 

after introducing expression (IO) for p(p, io) into (21) and with f ( q )  determined by (20). 
Condition (21) allows us to construct the solution of our problem symmetrically about the 
inversion x + -x (see also the note before (29)). 

4. Expression of p(z, 0, iw) through nonsingular integrals 

The substitution of (20) into (10) With the subsequent enforcement of condition (21) 
provides the formal solution of the problem in terms of singular integrals. In order to 
analyse approximations that are valid in different limiting cases and to perform numerical 
calculations it is useful to transform these integrals into non-singular integrals. The standard 
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method used to achieve this transformation is contour distortion in the complex plane, 
which in some cases even allows us to find expressions of the relevant integrals in terms of 
elementary functions. The method is illustrated in appendix 2. It follows from (lo), (19), 
(20) and the results of appendix 2 that 

&A 
(&i)2(w - is)p - is + 

The expression for the constant C in terms of the non-singular integrals that follow from 
(21) and (IO) after the contour distortions shown on figure 2 and a change of the integration 
variables, has the form 

fl 
C = -  (2ni)2(o Jz;;A - is)y(O) Sm I d p e x p [ - g $ p ]  kz + Diw(p2 - 1) 

(23) 

The explicit expression for the factor e x p [ @ ( i m p ) ]  in (23) is calculated in appendix 2. 
By a Fourier transform of (22) it is possible to find the integral representations for the 

experimentally mcasurable quantity p ( x ,  z, io). For z = 0 we find from (22), with the help 
of the contour distortion, that 

2 D i o S - m  [ p ( A  , ) ] D 2  k: + Diw(pz - 1) 
dpexp - - -- X I  p p ( x ,  0, iw) = - f i  -1  
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(W 
where the expressions for C and e x p [ r b . ( i m p ) ]  are given by (23), (A12) and (A14). 
The relatively simple non-singu!ar integral representations (24) for p(x ,  0, io) allows us to 
describe the most common experimental situations where concentrations and currents are 
measured on the plane z = 0. 

5. Asymptotics 

For applications, especially in the case of small A, it is important to calculate the asymptotics 
in the long-time limit / 

&+O 

which corresponds in terms of time-Fourier-transforms to the limit of the dimensionless 
width going to zero: 

A = A  - E  -+O. (26) 

It is also important to understand the behaviour of the solution as kz + +O. 
In this section we give a direct derivation of the asymptotic solution of our problem 

using a method analogous to the zero-range approximation of wave scattering theory [7, lo]. 
The starting point is the relation 

which follows from the Fourier transform of (8). Since in the limit + 0 the function 
p(x .  0, io) on the interval 1x1 c 4 becomes constant up to terms of the first order in A, 
it is possible to replace, approximately, p ( x ,  0, io) under the integral in (27) by its value 
p(0, 0, io) at x = 0. This leads to the equation 

which is correct up to terms of the order of A*. The value of p(0, 0, io) is defined by the 
self consistency conditiont 

t Note that relations (27) can also be used as the starting point as an alternative U, the method based on (21) for 
the continuation of the expression for p(x. L. io) from the interval x > -A12 to the whole renl x-axis. 
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where in the last equality we have made the now familiar integral contour distortion taking 
into account the pole at p = i& in the integrand. The asymptotic expression (A19) for the 
integral in (29) is found in appendix 3. After substitution of (A19) into (36) we find, finally, 
that 

for kz > 0, o > 0 (304  
where y is Euler’s constant. In the process of deriving equation (30a) the following exact 
cancellation takes place: 

For kz < 0 these terms do not cancel each other and the formal introduction of (A18) into 
(29) leads to the qualitatively different result 

According to (30), po(O,O, io) depends non-analytically on both 3 at kz with singularities 
at A = 0, and kz = 0. The non-analytical dependence on kz is the result of the absence of 
particle sinks at x > lA/Zl in the system when kz < 0. 

As an important example of the theory, we analyse the asymptotics for the 
experimentally measurable quantity Q(o), the so-called collector efficiency, for the Fourier 
components 

where j , (w) and jZ(o) are the time-Fourier-transforms of currents measured at the generator 
and collector planes (z = 0) for 1x1 c: A / 2  and 1x1 > A/Zrespectively, as shown in figure 1: 
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After substituting ~ ( 0 . 0 ,  iw) for p ( x ,  0, io) on the interval 1x1 < AI2 we find from (32). 
up to terms of 
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O(i2)and O(iz In i) (33) 

that for kz > 0 and 101 > 0 the currents j l , z (o )  are equal to 

and accordingly ( 3 0 ~ )  

thus recovering the result of [61. 

6. Conclusions 

The exact solution of the chosen reaction-diffusion problem has a rather complex structure 
reflecting the singular character of the dynamics itself. The most complicated (and 
informative) is the transition interval from small f (large w), when all concentrations are 
almost the same as at t = 0 and it is possible to use perturbation theory, to large t (small 
0). At the same time the expression for the collector efficiency Y(o) is, at least in the 
asymptotic limit, relatively simple and independent of the generator constant kl. This 
independence has an important practical implication: by measuring Y (U) it is possible to 
find the constant kz experimentally, avoiding the influence of the noise connected with the 
smallness of the generator size. There are two reasons for this simplicity. First, Y(o) 
is a causal response function obeying a dispersion relation. It is clear from the results 
of appendix 1 that the current j z  is a causal response to the current j ,  with the Fourier 
component j z ( 0 )  proportional to jI(o). Second, the structure of asymptotics can be inferred 
from the simple zero-range potential approximation discussed in section 5. The present 
calculations allow an understanding of the limits of validity of such an approximation and 
also allow the calculation of the constant itself for the chosen geometry. This is important 
because the approach based on the zero-range potential approximation can yield simple 
asymptotic expressions not only for a band or disc, but also in the cases of regular or 
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random arrays of sources with complicated geometries, zero and non-zero heights and with 
different diffusion laws for different chemical species [6]. The only parameters in such 
approximate expressions characterizing the geometry of an individual source are ‘effective 
widths’ Aes (or, in the case of sources with finite dimensions in all directions, ‘effective 
radii‘). For example, in the case of a source in the form of a semi-cylinder with radius R ,  
on the surface the parameter A.r is equal, in accordance with 141, to 4R. 

For practical applications it is important that the zero-range approximation can provide 
not only the main diffusion asymptotics t +~ 00 when all variables with the dimension of 
time are less than f ,  but is also valid for the time interval 

where k;(i = 1, . . . , n) are the, possibly different, reaction constants for n sources and sinks 
on the plane. 
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Appendix 1 

We will discuss the most simple realistic example of one-reversible redox reaction. The 
first electrode Ell-the generator-is a strip with the width A and the second electrode 
Elz-the collector--occupies the remaining part of the infinite surface (see figure 1). The 
oxidation-reduction reaction 

c 

x-i 
A0 + Eli SEI;  + AR i = 1,2  

takes place only on the surfaces i = 1.2 where A0 and AR are a redox couple with 
concentrations CO(X, z, 2) and CR(X, e, f), and K~ and K - ~  are the direct and reverse surface 
reaction rate constants (per unit electrode surface) at electrode Eli (i = 1,2). The constants 
~i and K - ~  in electrochemical systems are dependent on the potential drop which can depend 
on time and differ on different electrodes. We will suppose that at t < 0 the system is in 
equilibrium, which means that 

c O ( X , Y , o )  =cg c R ( X , Y ~ o ) = c ~  

At the moment t = 0 the reaction constants at El, are changed and, correspondingly, 

K i ( f )  K I ( O )  + 6 ( f ) 8 K i  

K - l ( f )  = K - 1 ( 0 ) + @ ( t ) 8 K - i .  
643) 
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The reaction constants at El2 remain the same for all times. Concentrations CO and CR 
obey the diffusion equation and the equations of material balance on the surface (boundary 
conditions) which have the form 

The diffusion coefficient D is supposed to be constant and equal for both species A0 and 
AR. Correspondingly, the sum CO + CR remains constant: 

(A5) CO@, 2, t )  f cR(x, z, f )  = cg f cg 
and we can only seek solutions for the quantity 

p(x ,  2, t )  = CO(& z, t )  - cg 

A = ~ K - , c ~ - s K ~ c ~  0 

which obey relations (1) and (2) in the text with 

kl = KI + K-, (A@ 
k2 = ~2 + K-Z. 

Appendix 2 

In order to demonstrate the integration technique allowing transformation of the singular 
integrals of section 2 into non-singular integrals, we consider the expression for F(,5 + is). 
According to equations (17x19) 

F(p+is) 
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In (22) we have first shifted the factor p' in the dominator, p' + p'fis, taking into account 
that the integrand is non-singular at p' = 0 and have then closed the integration contours 
by infinite semi-circles in the upper half-plane (in the first term) and in the lower half-plane 
(in the second term) of the complex integration variable p'. The final result (A7) follows 
from Cauchy's theorem taking into account that in the corresponding closed domains the 
only singularities are poles. The factors 

' 

entering (A7) and other expressions in the text can be calculated as follows. We find, using 
integration by parts and the symmetry ~ ( p )  = -y( -p) ,  that 

k2 ).  - ki 
(k: + Dio(p2 - 1) ki + Dio(p2 - 1) 

In the last equality (As) we have made the contour distortion I + I' (see figure 2) followed 
by an integration variable transformation. The remaining integral in (AS) can be transformed 
as 

P2 dP ki,z 
((io/D)p2 + q2) -k~ , ,  + Diw(pz - 1) 

where, on the right-hand side, the square root as a function of p has a cut on 
the interval from -1  to +I, and J1 - (p + ia)2 is an asymmetric function of real p on 
this interval as E --f +O. The integral (A10) can be performed by closing the integration 
contour in the upper complex half-plane: 
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After the introduction of (All) into (A9) and the integration over dq we find that 
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In deriving (A12) we have taken into account that 

The value of the factor e*(q) for Imq c 0 can be found from (A12) with the help of the 
equality 

@(-q) = -$(d. ( ~ 1 4 )  

Appendix. 3 

To calculate the asymptotics of the integral 

da(cosh*a - 1) e x p [ - ~ ~ A c o s h a ]  
= 1 cosho! g + Dio(cosh2a - 1) 

we divide it into three parts: 

d a e x p - [ ~ ~ A c o s h o ! ]  
cosha 

J($A,kz) = 

(A15) 
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The integrals in (A16) have the form 

j ( i A , a )  = a = ~ , i J x  
d a  e x p [ - m $ A ( c o s h a  3. a)] 

c o s h u f a  

(A17) 
ll 

and are equal [l I] to 

Introducing (A17) into (A16) and letting i\ + 0 we find 

where we have used the asymptotics 1111 of the Bessel function KO@) for small x:  

y being Euler’s constant. 
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